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Hamiltonian studies of the two-dimensional n-component cubic 
model: I 

F Igl6it 
Central Research Institute for Physics, H-1525 Budapest 114, POB 49, Hungary 

Received 2 January 1985, in final form 7 June 1985 

Abstract. The phase diagram and the critical properties of the Hamiltonian version of the 
two-dimensional n-component cubic model are investigated. Judging from the results of 
simple limits, mean-field calculation and RG transformations, the phase diagram of the 
one-dimensional quantum system is similar to that of the two-dimensional classical model. 
Several RG transformations were used to investigate the critical properties using different 
cell sizes in the transformation. The coincidence of critical and tricritical fixed points and 
the presence of a marginal operator showed the formation of the Ashkin-Teller fixed line 
and the breaking of the universality. The cubic transition is found to be first order for n > 2. 

1. Introduction 

The n-component cubic model represents a very general type of discrete lattice model 
and includes, in special cases, the Potts model (Potts 1952) and the Ashkin-Teller 
model (Ashkin and Teller 1943). Because of this the model shows many extraordinary 
aspects of critical behaviour. The nature of the phase transition changes with increasing 
number of spin components; as a result of competition the model is possessed of a 
multicritical point whose type also depends on n ;  in two dimensions (ZD)  for n = 2 
there is a critical line in the system (the description of this line of fixed points by the 
usual renormalisation group ( RG) transformation has not led to satisfactory results). 
However, by increasing the space of parameters by taking n to be a variable, and then 
extrapolating to n = 2,  a satisfactory description is obtained (Nienhuis er a1 1983). 

The n-component cubic model was originally introduced as a means of modelling 
anisotropic magnetic systems (Kim er a1 1975, Aharony 1977), but it has many other 
applications. In ZD, for example, the model describes some phase transitions of 
absorbed monolayers (for a review see Schick (1983)). The phase diagram of the 
model in ZD was determined by Domany and Riedel (1979), and the critical properties 
were investigated by Nienhuis et a1 (1983). In the latter paper the order of the phase 
transition was determined for different values of n by using the vacancy generating 
RG transformation (Nienhuis et a1 1979). Furthermore, by using an exact mapping 
onto a solid-on-solid model for the n = 2 case, new interconnections were obtained 
among the class of cubic, Potts and Ashkin-Teller phase transition phenomena. 

In this paper the phase transition properties of the Hamiltonian version of the ZD 

model are investigated. By taking the time-continuum limit (Kogut 1979), the ZD model 
is mapped onto a I D  quantum problem. In most cases the anisotropy in the ZD models 
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is irrelevant to the critical properties, and many approximate treatments are easier to 
apply ir? ID. 

The phase diagram of the system is determined by investigating simple limiting 
cases, by mean-field calculations, and by RG transformation. The critical properties 
of the system are investigated by several RG transformations. We use block transforma- 
tion and decimation transformation and apply different sizes of the cell in the transfor- 
mation, which together enable us to extrapolate the results. 

The paper is arranged as follows: 8 2 contains the time-continuum limit, the different 
representations of the problem and the analysis of different limiting cases. In § 3 the 
phase diagrams of the system obtained by mean-field and RG methods are presented, 
and in § 4 the critical properties of the model are investigated by RG transformations. 
Section 5 presents a short discussion. Some technical points of this paper may be 
found in detail in a preprint, available from the author (Igl6i 1984). 

2. Formalism 

In the n-component cubic model there are spins on a lattice, each spin with 2n states, 
denoted by ll), 12), . . . ,12n). The energy of the system depends on the nearest-neighbour 
configuration. The interaction energy between neighbouring spins is 

For A 1  = Az,  the model reduces to the 2n-state Potts model (Potts 1952), while for 
n = 2 it corresponds to the Ashkin-Teller model (Ashkin and Teller 1943). 

The Hamiltonian version of the 2D n-component cubic model is a I D  chain with the 
classical (2.1) interaction in the presence of an external spin-flip field, which depends 
on two parameters h ,  and h2: 

In this representation the coupling part of the Hamiltonian (2.1) is diagonal. 
Therefore it may be called the strong-coupling (or low temperature) representation. 
For the h l ,  h2 + 0 limit, in the ground state all spins are in the same state which results 
in a 2n-fold degeneracy. 

In the weak-coupling limit it is more convenient to use the representation where 
the spin-flip field is diagonal. Let us introduce the following orthonormal set of vectors: 

11’)=(1/J2n){l1)+/2)+. . .+12n)}, 

/2’)= ( l / JG){l l )+w12)+.  . .+w2n-l12n)}, 
(2.3) 

I(2n)’) = (l/JG) {I 1) + o2n-112) + . . . + w ( 2 n - l ) 2  12n)L 

where w = exp(2~ i /2n ) .  
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In this representation HA leaves invariant the sum of the spins along the chain, 
modulo 2n. Therefore the eigenstates of the chain belong to 2n disjoint sectors that 
can be characterised by the functions 11’1’. . . 1’), 12’1‘. . . 1‘), . . . , I(2r1)~l’. . . lr), and 
will be called the lst, the 2nd and the 2nth subspace, respectively. From symmetry 
considerations it follows that the 1st subspace is non-degenerate, while the 
2nd, 4th,. . . ,2nth subspaces are n-fold degenerate, and the 3rd, 5th, 7th,. . . , (2n - 1)th 
subspaces are ( n  - 1)-fold degenerate. At the thermodynamic limit, when the length 
of the chain tends to infinity, further degeneracies may occur. The type and degeneracy 
of the ground state characterise the different phases. We shall return later to this 
question. 

Besides the weak- and strong-coupling regions, characterised by the conditions 
h,, h2 >> A,,  A 2  and A I ,  h2 >> hl ,  h2 respectively, there exists another simple limiting case, 
when A2,  h2 >> A I ,  hl. 

Let us now make use of the following combination of the states: 

1 I( n + 1)”) = -(Il) - In + l)) ,  
1 

/1”)=J i ( l l )+ ln+l ) ) ,  Jz 

1 2 ” ) = ~ ( 1 2 ) + / n + 2 ) ) ,  IKn + 2)”) = 3 0 2 )  -In + a ) ,  (2.4) 
1 1 

Now it is easy to see that the part of the Hamiltonian proportional to h2 and h2 is 
diagonal. The ground state of the system at the limit h2,  h2 >> A I ,  h l  is n-fold degenerate: 
11”l”. . . lr‘), 12”2”. . .2”),. . . , 1n”n”. . . n”). The relevant excitations have a simple form 
either for I t ,<<  A I  or when A,<< h,. In the first case the system can be represented by 
an Ising-like state; each spin can be in two possible states, say 11”) and I( n + l)’f). The 
form of the Hamiltonian reduces to 

H = - ’ h  z I C , d d + i  - h 2 C  ( d - 1 ) + O ( h 1 / & )  (2.5) 
I I 

where a:, af Pauli operators act on the states 11”) and I( n + 1)”). At this limit the phase 
transition is Ising-like and takes place at 

h2/Al = i. (2.6) 
At the other limit, for A I  << h,, the relevant excitations are, at each site, a combination 
of the states [l”), 12‘7,. . . , In”). The Hamiltonian can be written as 

H = - ’  2 A 2  C(S , S , S , + I  -1) -2h ,C 2 M f + O ( h l / h 2 )  
i k = l  

(2.7) 

where si = 1,2, .  . . , n. M is an n x n matrix 
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acting on the states Il”), 12”), . . . , In”). The Hamiltonian (2.7) describes the n-state Potts 
model. From the exact solution of Baxter (1973) it is known that the phase transition 
takes place at 

4nh,lA2= 1. ( 2 . 8 )  

Furthermore it is first order for n > 4, and continuous for n S 4. In closing the section 
let us briefly summarise the possible phases of the system. For positive values of the 
couplings the system exhibits three phases. If the couplings are much smaller than 
the external fields ( A  A 2  << h, , h2) the system is paramagnetic, and the ground state is 
non-degenerate. (In the figures this region is denoted by I.) At the opposite limit, 
when the external fields are much weaker than the couplings ( h , ,  h2<< A , ,  A*), the 
system is ferromagnetically ordered and the ground state is 2n-fold degenerate (denoted 
by 111). Finally, at the A 2 ,  h2>>A1, h,  limit, the system is partially ordered, and the 
grcund state is n-fold degenerate (denoted by 11). 

On the phase boundaries of the system the following can be determined. At the 
2n-state Potts point ( A ,  = A2) ,  and for A ,  < A2,  there is no partially ordered phase. By 
increasing the strength of the external fields, the system goes in one step from the 
ferromagnetic phase to the paramagnetic phase. This is the cubic transition. By 
increasing the value of A 2  the partially ordered phase appears and the cubic transition 
line bifurcates. At the A 2  >> A ,  limit, according to equation (2.5), the transition between 
the ferromagnetic and the partially ordered phase is equivalent to the transition in the 
Ising model. On the other hand, the transition between the partially ordered and the 
paramagnetic phase can be described by the n-state Potts model (equation (2.7)). 

3. The phase diagram 

The phase diagram of the system is determined by mean-field calculation and by the 
RG method. 

First the result of the mean-field calculation is presented. The simplest form is 
chosen for the trial wavefunction; this is the product of the one-spin wavefunctions 
(Igl6i 1984). 

The mean-field phase diagram is drawn in figure 1 for n = 3. The topology of the 
phase diagram is the same for all values of n, and is in accordance with those written 

Figure 1. Mean-field phase diagram for n = 3 .  The model is paramagnetic in region I ,  
partially ordered in region I1 and ferromagnetic in region 111. 
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in 0 2 .  The order of the phase transitions obtained is different for n = 2 and for n 3 3 .  
The types of transitions between the different phases for n = 2 and for n 3 3 are given 
in table 1. 

We have also determined the phase diagram in the n -P CO limit, since the mean-field 
phase diagram is generally exact, if the number of components of the spin or the range 
of interactions goes to infinity. The phase diagram for n +CO is Shown in figure 2 in 
the following plane: 

A1/2n = 1, 

h = 2nhJ A, = 2nh,/ A,, (3.1) 
A = A 2 1  A ,  = h,/ h i .  

We will touch upon the importance of this subspace in the following paper (Igl6i 1986, 
hereafter referred to as paper 11). Here we use it for better representation. 

The mean-field phase diagram is exact for the cubic transition line, as we can state 
in comparing it to the result of the l l n  expansion (paper 11). A further possibility to 
check this is to compare the phase diagram with the asymptotic transition lines 
(equations (2 .5)  and ( 2 . 7 ) ) .  In this way the paramagnetic partially ordered transition 
coincides with equation ( 2 . 7 )  whereas the partially ordered ferromagnetic transition 
does not agree with the asymptotic line ( 2 . 5 ) .  

Table 1. Nature of transitions in the mean-field calculation. I, I1 and I11 denote the same 
regions as in figure 1. 

Transition n Type of transition 

I + I I I  2 2nd order, 1st order, tricritical points 

1-11 2 2nd order 

3 3  1st order 

3 3  1st order 

I1 + 111 2 2nd order 
3 3  2nd order 

1 h ' h ,  

Figure 2. Mean-field phase diagram for n - 03. The I1 + 111 transition takes place on the 
line h l / A ,  = ( A 2 / A 1 ) - ' .  
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To determine the phase diagram by the RG method a self-dual decimation trans- 
formation (ST) is used, which was proposed by Fernandez-Pacheco (1979) for the Ising 
model, and was later applied to different problems (Horn er a1 1980, Hu 1980, S6lyom 
and Pfeuty 1981, Igloi and S6lyom 1983a, 1984). The transformation generally gives 
the exact phase-transition points for self-dual models, but it is also quite accurate for 
non-self-dual models for the phase diagram. The derivation of the RG transformation 
as well as the structure of the fixed points is like those obtained for the Ashkin-Teller 
model (Igl6i and S6lyom 1984). The RG transformation does not generate new coup- 
lings, and the recursion relations have three types of trivial fixed point solution yielding 
three different phases. The region of attraction of these fixed points is shown in figure 
3 for n = 2 .  It is mentioned that the structure of the phase diagram obtained by this 

-d 
Figure 3. Phase diagram for n = 2  obtained by ST. I ( n ) ,  P ( 2 n ) ,  P ( n )  and I denote the 
non-trivial fixed points. 

transformation does not depend on the value of n ;  it is only that the boundaries of 
the phases are changing. 

The different phases can be characterised as follows: 
I, paramagnetic phase: the couplings scale to h ,  = arbitrary, h2 = arbitrary, A ,  = 0, 

11, partially ordered phase: the couplings scale to h ,  = 0, h2 = arbitrary, A ,  = 0, 

111, ferromagnetically ordered phase: the couplings scale to h ,  = 0, h2 = 0, A ,  = 

The critical surfaces, which separate the different phases, are characterised by the 

(i) The points of the surface separating the paramagnetic and the ferromagnetic 

A 2  = 0, 

A 2  = arbitrary, 

arbitrary, A 2  =arbitrary. 

following non-trivial fixed points. 

region scale to h ,  = 0, h2 = 0 ,  A ,  = 0, A 2  = 0, with, however, 

A2 -=o.  
A ,  A I  A I  

2nh ,  h2 -=o, ~- - finite, 

This fixed point is denoted by Z ( n )  in figure 3. (The notation is explained by the fact 
that for n = 2 it is an Ising-like fixed point.) The position of the fixed point as well 
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as the eigenvalues of the linearised RG transformation at the fixed point are given in 
table 2. 

(ii) The points of the critical surface separating the paramagnetic and the partially 
ordered region scale to h,  = 0, A ,  = 0, A 2  = 0, h2 = arbitrary, with, however, 

2nh,/A2=f, A l / A 2 = 0 .  

This is the fixed pobt  of the n-state Potts model, denoted by P(n) .  The thermal 
eigenvalue is (n+2Jn+2) / (&+2) .  

Table 2. Position of the I ( n )  fixed point and the eigenvalues of the ST transformation for 
different values of n. 

n 2nhiIAi 12: 12: 12: 

2 1 2 0.707 0.707 
3 0.733 2.476 0.814 0.737 
4 0.650 2.870 0.861 0.761 
5 0.611 3.212 0.888 0.779 

10 0.547 4.532 0.942 0.829 
100 0.504 14.214 0.993 0.936 
m 0.5 + 8/2n J2n 1 1 

(iii) The points of the surface separating the ferromagnetic region and the partially 
ordered region scale to h,  = 0, h2 = 0, A ,  = 0, h2 =arbitrary, with, however, 

h, lAl  =o,  hJA, = f .  

This is an Ising-like fixed point denoted by I; the thermal eigenvalue is 2 and the 
critical exponent v is 1. 

(iv) The points of the line where the three phases coexist scale to h l  = 0, h2 = 0, 
A ,  =0,  A2=0, with, however, 

- 1. A 2  

A I  A I  

_-  2nh2 -- 2nh, 
A1 

- 1, -- - 1, 

This is the critical point of the 2n-state Potts model, denoted by P(2n). The eigenvalues 
at this point are 

~ : = ( 2 n + 2 J 2 n + 2 ) / ( J 2 n + 2 ) ,  

AT = 1 + 2/ (JG + 1 )( 1 + gz), 
AT= 1. 

This renormalisation group procedure accurately describes the phase boundaries in 
the region between the I ( n )  and P(2n)  fixed points, as is shown in paper I1 by 
comparing the results with series expansion. However, in some respects it gives a 
rather crude description. First of all, the phase transitions are determined to be second 
order for any values of n, in contrast to the fact that transitions described by the I (  n) ,  
P(2n), P ( n )  fixed points should be of first order for large values of n. Otherwise the 
bifurcation line always goes through the 2n-state Potts point, although it should move 
to higher values of A 2  and h2, as is shown by series expansion results (paper 11). 
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4. Critical properties 

The critical properties of the model are determined by the block transformation (BT) 
and by the usual decimation transformation (DT). (For a review of the quantum RG 
methods-see Pfeuty et a1 (1982).) These two transformations are duals of each other 
for self-dual models (Sdlyom 1981); in our case they supply different, but rather similar, 
information. In both transformations starting with the Hamiltonian with four couplings, 
the RG transformation generates three new ones, but further renormalisation steps do 
not increase the number of couplings. In both methods, in order to make extrapolations, 
we use different sizes of the cells in the transformation. 

A schematic picture of the RG phase diagram containing the qualitative features 
of the results of the two transformations is given in figure 4 for different values of n 
in the extended space of couplings. The third axis, pointing perpendicularly to the 
physical plane, serves to represent all new couplings, and therefore somehow plays 
the role of the dilution in the 2~ classical model. 

The phase diagram consists of the three already known phases, which are charac- 
terised by similar trivial fixed points as in ST, discussed in 0 3. Otherwise, the transition 
between the ferromagnetic and partially ordered regions in BT and DT remains Ising- 
like, and is controlled by the one-fold unstable I fixed point. The three other transitions, 
however, as one can see in figure 4, are controlled by critical, tricritical and discontinuity 
fixed points, denoted by the superscripts 'c', 't' and 'd', respectively. The IC( n), Id( n), 
P'(n),  Pd(n) fixed points are one-fold unstable, the I ' ( n ) ,  P ' ( n ) ,  Pc(2n), Pd(2n)  are 
two-fold unstable, while the P'(2n) fixed point is three-fold unstable. In dll cases the 
critical fixed points control the second-order transitions of the physical model, the 
discontinuity fixed points describe first-order transitions, while the tricritical fixed 
points separate the second-order and first-order transition regions. (In the simplest 
case, when two spins are in the cell in the transformation, there are other non-trivial 
fixed points, which are moving on the line between the I(n) and P(2n) fixed points, 
and the degree of instability of the different fixed points depends on the value of n. 
Since by using larger cells in the transformation these moving fixed points do not 
appear, their appearance for the simplest case is attributed to the effect of approxi- 
mation.) 

The evaluation of the structure of the I(n), P(n) and P(2n) fixed points with 
increasing value of n is the well known process characteristic for the crossover from 
second-order to first-order transitions (Nienhuis et a1 1979, Sdlyom and Pfeuty 1981). 
The critical and tricritical fixed points move towards each other. At a critical value 
(denoted by nf and nr for the cubic and the 2n-state Potts transitions, respectively) 
they coincide, the next-to-leading eigenvalue of the linearised RG equations at the fixed 
point is exactly 1, and the crossover eigenvalue is very close to 1. If the value of n is 
further increased, the two fixed points annihilate each other, and the transition in the 
physical system is controlled by the discontinuity fixed point, i.e. it is of first order. 

The critical and tricritical thermal exponents as a function of n in the I ( n )  and 
P ( 2 n )  fixed points for DT are given in figure 5 and figure 6 ,  respectively. In figure 6 
the conjectured values (den Nijs 1979) are also drawn. The calculated exponents even 
for B = 5 are rather far from the conjectured ones, but an extrapolation procedure 
gives satisfactory results (Pfeuty et a1 1982, Igldi and Sdlyom 1983b). 

The critical values of n and the crossover eigenvalues for the different transitions 
and different sizes of the cells are given in table 3. One can see that the nd values are 
larger than two, and they monotonically decrease. This series presumably tends to 
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h 

h 

h 

/// \ 

Figure 4. Schematic renormalisation group phase diagrams obtained by decimation trans- 
formation and by block transformation. The { h , }  axis serves to represent all new couplings 
generated by the transformations. ( a )  n 1 2 ,  ( b )  n = 2  (Ashkin-Teller model), ( c )  n>4. 
Dots represent non-trivial fixed points; the double line for n = 2 is the Ashkin-Teller fixed 
line. 

two, which is supported by the fact that at n = 2 the transition is of second order, and 
the inequality n,' < n p  holds for all calculated sizes of the cell in the transformation 
and n p  tends to 2.  The crossover eigenvalues given in table 3 are very close to 1, 
both in the Z(n) and in the P ( 2 n )  fixed points at the annihilation values of n. These 



512 F Zglo'i 

1 2 3 
n 

Figure 5. Critical and tricritical thermal exponents at the I ( n )  fixed point calculated by 
decimation transformation for B = 2 and 3. The square denotes the exactly known value 
for the Ising model. 

I 
1 2 3 

n 

Figure 6. Critical and tricritical thermal exponents at the 2n-state Potts point by using 
different sizes of the cell in the transformation. The exact values (den Nijs 1979) are 
represented by the broken line. 

Table 3. Critical values of n, where the critical and tricritical fixed points annihilate each 
other. Superscripts I and P refer to the I ( n )  and P(2n)  fixed points, respectively; n,'(BT) 
and n:(m) were calculated by block transformation and by decimation transformation, 
respectively. The values in parentheses are the next-to-leading eigenvalues of the RG 
transformations when the critical and tricritical fixed points coincide. 

~~ ~ 

2 3.24 (1.009) 3.34 (1.010) 3.41 (0.993) 
3 3.04 (0.972) 3.08 (0.980) 3.12 (1.014) 
4 2.99 3.02 (1.040) 
5 2.92 
m 2 (1) 2 (1) 2 (1) 

facts signal the presence of a marginal operator and a line of fixed points with 
continuously varying critical exponents, i.e. the Ashkin-Teller fixed line. 

Thus we can conclude that our findings are in accordance with the assumption that 
the breaking of universality on the cubic transition line takes place in two steps for 
increasing value of n: 
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(i)  At n = 2  the critical indices of the second-order transition depend on the 
coupling. 

(i i)  For n > 2 the transition is of first order, and the latent heat depends on the 
coupling. 

Finally we would mention that the neighbourhood of the multicritical point cannot 
be investigated satisfactorily by these RG transformations for n : 2. With these calcula- 
tions, similar to the ST, the multicritical point and the 2n-state Potts point are found 
to be the same, which is in contrast to the result of the l / n  expansion (paper 11). The 
nature of the multicritical point is.still unsolved, even for the 2 0  classical model. 

5. Summary 

In this paper the phase diagram and the critical properties of the Hamiltonian version 
of the ZD n-component cubic model were determined by different methods. Analysis 
of simple limiting cases and the results of mean-field calculation and RG transformations 
have shown that the phase diagram of the ( 1  + I ) D  model is similar to that of the 2~ model. 

The critical properties of the model were investigated by different RG transforma- 
tions. By using different sizes of the cell in the transformation, it was possible to 
extrapolate the results. The calculation gave an account of the line of fixed points in 
the Ashkin-Teller model, and of the first-order transition on the cubic transition line 
for n > 2 .  

Comparing our results with those obtained by Nienhuis et a1 (1983) on the n- 
component cubic lattice gas, some qualitative differences may be obtained. First, the 
positions of the fixed points of the two transformations governing the cubic critical 
behaviour are not equivalent to each other in the time-continuum limit. Furthermore, 
according to Nienhuis et a1 (1983) the cubic tricritical and the first-order behaviour 
is governed by the 2n-state Potts tricritical and discontinuity fixed points, and the 
cubic transition is of the O( n) universality class. This latter statement is in accordance 
with the finite size scaling results of plate and Nightingale (1984). In our case there 
are separate tricritical (It( n ) )  ar,d discontinuity (Id( n ) )  fixed points controlling the 
cubic transition, and also the merging of these fixed points takes place. These differences 
may probably be ascribed to the fact that the generalisations of the model by the two 
RG transformations are different. 
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